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PREFACE 

This report constitutes the second of two volumes which summarize 

It contains supporting the work accomplished under Contract NAS8-2 1282. 

experimental data, a theoretical analysis, and a listing of a digital computer 

program designed for predicting dynamic stability of propellant tanks under 

longitudinal excitation. The first part of the work, which deals with the 

dynamic state of the system prior to instability, is summarized in Final 

Report, Part I, entitled "Influence of a Rigid Top Mass on the Response of 

a Pressurized Cylinder Containing Liquid. I t  

Both Part I and Part I1 of this Final Report a r e  published on the 

same date. 

originated under previous investigations conducted for NASA-MSFC. 

Results of this preliminary work a re  summarized in "Dynamic Stability and 

Parametric Resonance in Cylindrical Propellant Tanks, I t  by Daniel D. Kana, 

They present significant extensions and refinements of concepts 

Wen-Hwa Chu, and Tom D. Dunham, Final Report, Contract No. NAS8- 

20329, SwRI Project No. 02-1876, January 17, 1968. 



ABSTRACT 

Dynamic instability and associated parametric resonance is a 

dominant form of response in a longitudinally excited cylindrical shell con- 

taining liquid. 

space vehicle propellant tank, the present paper is devoted to a theoretical 

and experimental study of their occurrence in a cylindrical shell system 

which includes the influences of axial preload, ullage pressure, partial 

liquid depth, and a finite top impedance. 

a modified Galerkin procedure is utilized to formulate equations which 

govern the stability of perturbations superimposed on an axisymmetric 

initial state of response. 

of parameters affecting the region of principal parametric resonance and 

are  compared with experimental results. 

In order to assess the significance of such responses in a 

Donne11 shell theory along with 

Stability boundaries are computed for a range 

It is found that liquid depth, top 

impedance, and ullage pressure have a strong influence on stability, while 

the effects of axial preload are  relatively insignificant. 
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NOMENCLATURE 

a radius of the shell 

speed of sound in the liquid c O  

CS E l P S ,  speed of s t ress  waves in the shell 

E modulus of elasticity 

g standard acceleration of gravity 

H h/ a,  nondimensional liquid depth 

H S  hs / a, nondimensional thickness of shell 

mass moment of inertia of top weight about z axis 1, 

B length of the shell 

m one-half of the number of circumferential nodes; cos (me) 
.(r 

NG,d, N e  &j dynamic part of initial-state s t ress  resultants [ nondimen- 
sionalized by (1 - v2)/Ehs] 

4. 4. 

NGxS, Nees, l!J&s static part of initial-state s t ress  resultants [nondimension- 
alized by (1 - v2)/Ehsl 

n axial wave number; sin nnx/l 

pr nondimensional pressure loading on shell, P r / E  

po9po axial preload, ullage pressure 

R, 8, x cylindrical coordinates (space-fixed) nondimensionalized by 
radius a 

u, v* w shell displacements u, v, w, nondimensionalized by the 
radius a 

xO 

ZO 

nondimensional amplitude of axial excitation (XO = 2o/ a)  

top acceleration impedance (force/ acceleration) 

P density parameter pi a/pshs 



NOMENCLATURE (Cont'd) 

V 

P S  

7 

2 
wO 

wr 

2 
Q i  

Supers c ripts 

( -1  

Poissons ratio 

velocity potential, nondimensionalized by m o a  2 2  /or 

mass density of liquid 

mass density of the shell 

nondimensional time, 7 = art 

liquid parameter c& a2 

response frequency 

excitation frequency 

natural frequency of m-k'th mode 

designated frequency, nondimensionalized by a2/ cg 

designated frequency, nondimensionalized by (1 - v 2 )  X 
aZ/c; 

designated frequency, nondimensionalized by a2/ c2 0 

the amplitude of ( ) 

(d/dr) ( ), 7 = w t  

related to initial state response 
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INTRODUCTION 

Dynamic instability and parametric resonance are known to occur in 

many engineering systems. Numerous classic examples have been studied 

in detail by Bolotin'. 

found that this type of behavior is dominant amidst a complex variety of 

responses which can be observed in a longitudinally excited model vehicle 

propellant tank which is not sufficiently reinforced with stiffeners. 

ical and further experimental investigation3 was conducted for a longitu- 

dinally excited, liquid-filled cylindrical shell. 

initially tends to respond in a state comprised of linear axisymmetric modes. 

However, the resulting membrane stresses form a parametric load with 

respect to nonaxisymmetric perturbations superimposed on the initial state. 

Thus, for wide ranges of the excitation parameters, instability and subsequent 

parametric resonance results, and linear vibration theory is no longer ade- 

quate to predict the response of either liquid pressure or wall motion. 

In more recent experimental investigations2, it was 

A theoret- 

It was found that the system 

In order to assess the significance of such instabilities in a propellant 

tank which forms a component in an overall space vehicle structure, the 

present paper is devoted to a study of their occurrence in a cylindrical shell 

system which includes the influences of axial preload, ullage pressure, 

partial liquid depth, and a finite top impedance. A diagram of the system is 

shown in Figure 1, which includes the appropriate parameters and boundary 

conditions for both the initial and perturbed states. 

represents linear forced axisyrnmetric motion, whose responses have already 

The initial state 
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been determined, along with natural frequencies and modal functions for  the 

system4. 

present paper, although results from Reference 4 must be utilized in part 

of the analysis. 

axisymmetric (m = 0) or nonaxisymmetric (m > 0); however, for a single 

tank system, the nonaxisymmetric form of instability is dominant. 

Stability of motion in the perturbed state is the subject of the 

Note that, theoretically, the perturbed state can be either 

DERIVATION OF STABILITY EQUATIONS 

The perturbed motion represented by Figure lb  will be analyzed by 

which a re  based on Donne11 means of Sander's nonlinear shell equations5* 

approximations. 

the rotation of shell elements as  well as nonlinear strain-displacement 

relations. 

retaining only nonlinear terms which result from rotations is sufficient to 

determine dynamic stability. Compressible flow theory is used for the liquid. 

The motion is expanded into a series of the natural mode eigenvectors which 

4 were obtained from the solution of the free vibration problem . A modified 

Galerkin procedure is then utilized to reduce the system to a linear second- 

order, time dependent set  of coupled differential equations having periodic 

coefficients. The method is "modified" in the sense that the natural modal 

functions (finite series eigenvectors) are chosen as weighting functions, although 

they a re  not of closed form. 

then be obtained by the use of only one eigenvector term of the series,  so that 

the coupled set  reduces to a single stability equation. 

These equations contain nonlinear terms resulting from 

We will  follow the philosophy of Bolotin' and assume that 

An approximation of the perturbed motion will  
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Thus, the governing shell equations a re  of the form 

F~ = Lllu + ~~~v t ~ 1 3 ~  -B$a2u/a+ = o 

F~ = t ~~~v t - d:a2v/a$ = o 

F3  = ~ 3 1 ~  t ~ 3 2 ~  t L ~ ~ W  - fi$a2w/a+ t EdF33W cos at 

where 

a2 1 - I, a 2  
L1l =zt-- 2 a e 2 ’  

2 a2  i - v  a t-- 
2 ax2 ’ L22 = 3 

i + v  a 2  
L12 = 2 

i + v  a2  
L21 =- - 2 axae 

a a 
ax ’ a e  L32 = - -  L31 =’ - v - 

L33 = -[$($+2 a4 2+-) a4 t l ] t [&(N‘:  -) a 
ax ae ae4 xxs ax 

Ed = 0 for free vibration 

Ed = 1 for forced vibration 

Pressure  loading onthe shell is given by: 
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where the fluid velocity potential is governed by 

Boundary conditions onthe fluid and shell are: 

At X = 0, 

w =  0, v = 0, a2w/ax2= o 

and 

*.I-..- F~ = au/ax t z -n$a2u/a72 = o 

where 

2np aLhs 

(1 - &)I, 

4P shs a5 

z:= = for m = 1 

Solutions of the shell motion having a given circumferential displace- 

ment distribution will be sought as expansions of the m, k-th natural modes 
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where for convenience we have defined a general shell displacement 

vector 

A u = G(U, v, W) = G(U1, u2, U3) 

which is a function of both space and time and is associated with the fluid 

velocity potential 0 and upper shell displacement Ul . 
The potential @ satisfies Equation (4) which forms a constraint on 

the shell system. 

apparent mass which is valid at the response frequency or, we express the 

In order t o  interpret the fluid pressure loading as an 

potential for forced motion as 

Note that amk(or, R, X) is the component of @ associated with a shell displace- 

ment component Wmk, and both liquid and shell motion is anticipated to be 

nearly periodic with responses at frequency w r .  At the shell wall, we use the 

not ation 

For  the special case of wr  = Wk, the system responds in the m, k-th 

natural mode, and the shell displacement modal functions form the vector 
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This vector is a function of space only and is associated with the fluid 

velocity potential hk (wk ,  X) and the top displacement Ul  k. From the 

definition of natural frequencies, these modal functions satisfy 

3 

i = 1,2,3 

We now consider the forced motion. By means of a Galerkin 

procedure7, we form an expression for virtual work in the system 

2 

where 

em =.1 for m = 0, 1 

em = 0 for m L 2  

More specifically, we substitute Equations (3), (6)  and (7) into Equations (1) 

and (5) and then by means of Equation (9) form an expression for virtual work 

between forces (expressed in terms of displacements) associated with the 

general forced motion and displacements associated with the m, k'-th natural 

mode. There results: 
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K r  - 3  3 

Upon use of Equations (8), reverting back to the more conventional displace- 

ment symbols in Equations (6) and carrying out the spatial integration, this 

can be written as 

where k' = 1,2 ,3 , .  . . , K, and 

I l a  

K2k'k = Urnk'UmkdX 
0 

1 l a  
K3k'k = Vrnk'VmkdX 

0 
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0 
K 

The coupled set of K equations (1 1 ) govern the perturbed motion, described 

in Figure lb ,  for a given value of m. We will limit further discussion to 

the case of modes having m 2 2. 

radial for the set  of natural modes at lower frequencies. 

For these modes, the dominant motion is 

Thus, the terms 

under the first  summation can be neglected, and, in matrix notation, 

Equations (1 1 ) become 

where the elements of the klth row and k-th column of the corresponding 

matrices a re  
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Equation (1 3a) can further be written as 

When the flow is incompressible, Mktk is independent of w and we have 

where [I1 is the identity matrix. 

a re  not general differential equations in time but include the restriction of 

It must be emphasized that Equations (13) 

nearly periodic motion in the generalized apparent mass given by Equation (7). 

EVALUATION O F  MATRIX ELEMENTS 

Modal Functions 

Elements of the matrices in Equations (13) will  now be evaluated from 

Equations (12d-g) in terms of the X-dependent natural modal functions 

(eigenvectors) of the system. These functions, which are  not of closed 

form, have previously been determined from an eigenvalue problem4 in 

terms of the following series forms for the shell displacements: 
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and, for the velocity potential, 

where Qmn(wr, X) is a component function which satisfies Equation (4) for 

vibration at f.requency wr, and corresponds to the sin XnX component function 

in wmk through the boundary condition which must be satisfied at the tank 

Mas s Coefficients 

The mass coefficient Ik!k will now be developed from Equation (12f). 

By means of Equation (14c), there results 
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By substituting Equations (14c) and (15) into (12d), the 

liquid apparent mass coefficient corresponding to the response frequency 

wr becomes 

N N  

n = l  n ' = 1  
a ) =  c 1 Ph?nkPh?nlknn'n(wr) Mklk( r 

where 

Except for a normalizing constant, the latter expression has also been 

evaluated in previous work. That is, 

2 Wnln(wr) = anlMmn'n 

where 

Q 
sin XntXdX = - 2a 

2 ani - - 
0 

and Mmnln is given by Equation (18a) in Reference 4. 

free index k used in the referenced expression is not the same k which is 

used to designate the natural mode herein, and we must also use wr = w. 

Note, however, that the 

Finally, the apparent mass coefficient Mklk(wk) given by Equation (12e) 

is obtained simply by substituting wr = Ok in Equations (17) and (18). 

Parametric Coefficients 

Upon substitution of Equation (14c) into (1 Zg), we obtain: 
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N N 

n = l  n t = l  
Nklk = 1 1 %mk%-nn'k'Jntn 

where 

t m 2* NgOd J- sin inx 

The dynamic s t ress  resultant amplitudes $gxd and 

forced excitation in the axisymmetric initial state described in Figure la. 

These s t ress  amplitudes can be expressed in terms of the amplitudes of the 

a re  produced by 

initial-state displacements by means of the usual s t ress  -displacement 

equations 

Thus, the parametric coefficients are  partly determined by the initial state 

displacement amplitudes fTp and cp. 
The solution to the linear forced axisyrnmetric response of the initial 

state, in terms of displacements, has previously been given by Equation (25) 

in Reference 4. However, in the direct use of this equation, the appropriate 

elements of its matrices must include the substitution 
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since an arbitrary acceleration impedance is allowed in the present problem, 

rather than only a rigid mass. Further, to allow for  comparison of numeri- 

cal and experimental data, it is convenient to express the initial-state 

displacements as ratios of the excitation amplitude Xo, Therefore, the 

dynamic displacement amplitudes a re  of the form 

whose coefficients are  completely determined by solving for the case of 

xo = 1. 

The initial-state s t resses  can now be determined. Upon substituting 

Equations (22) into (20a), there results 

I- N 1 

and the derivative is 

Upon substituting Equations (22) into (20b), there results: 
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For convenience of computation, these s t ress  resultants and deriva- 

tives a re  expanded into complete Fourier series as follows: 

Q / a  
- * 

X O ~ I I  - J sin XntlXdX 
0 

l l a  
m 

X sin hnl,XdX 
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The parametric coefficients can now be completely evaluated. 

Upon substitution of Equations (24) into Equations (1 9), there results 

where 

eOn'n = i'" cos XnX sin hntXdX 
0 

I / a  
en l ln ln  = cos XnIrX cos XnX sin XnIXdX 

0 

- - 1'" sin XnrrX sin XnrX sin XnXdX dnfcnrn 
0 

One - Term Approximation 

For the m-k'th natural mode in Equation (13a), set k' = k to obtain 

where from Equations (16-19) 
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n = l  n t = l  L n t l = l  

1 

1 t m 2 NZnt~dnttnrn - &N3nlfentlnln) - XnB:eontn 

Equation (26) is a Mathieu equation whose stability properties are 

well known. To put it in a standard form8 for determining the stability 

boundaries for principal parametric (1 /2-subharmonic) resonance, we set  

w = 2 w r  and obtain 

gk t (a t 2-0 cos 27)ak = 0 

where 

The stability.boundaries can then be approximated by 

- 
qXo = Z - 1 for Z >  1 

qXo = 1 - a f o r a <  1 - - 

In terms of input acceleration, which is convenient for experimental mea- 

surement, these become 

THEORETICAL AND EXPERIMENTAL RESULTS 

Experimental data for stability boundaries are obtained from the 

apparatus shown in Figure 2. All pertinent parameters, iqcluding the input 
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impedance Zo of the boundary condition at the tank top, could be measured. 

The use of acceleration impedance (force/acceleration) proved to be most 

convenient in this application. 

using different rigid masses as well as the loading frame. 

is made of 0.005-in. stainless steel, has a diameter of 10 in., and is 

14.5 in. long (the same cylinder as that used in Reference 4). 

Variation of the impedance was achieved by 

The cylinder 

Theoretical and experimental stability boundaries are compared in 

Figure 3 for the k = 1, m = 10 mode. 

Equation (29) with N = 5 terms. 

boundaries result in a principal parametric resonance whose mode shape 

is dominantly the k = 1, m = 10 natural mode, and whose frequency of 

motion is 1 /2-subharmonic to the excitation. Experimental points were 

determined as the points of least acceleration where the parametric 

response would occur. 

between theoretical and experimental results for the empty tank, and better 

agreement is achieved for greater liquid depths. 

it was ascertained that the wider experimental stability boundaries are  

principally caused by imperfections in the cylinder. 

modes9 and spatially shifting modal patterns occurred so that one exact 

natural frequency did not exist. 

a tendency to be more unstable than predicted by theory. This trend is 

apparent in all the data. It is possible that somewhat better agreement 

could be achieved by the use of some form of imperfection theory in the 

analysis. 

Theoretical results areobtained from 

Excitation conditions at or above the 

It is apparent that significant deviation exists 

After careful scrutiny, 

That is, split natural 

As a result, the experimental system shows 

This possibility remains to be investigated. 
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It was desirable to determine the influence of the various system 

This was done parameters on the stability boundaries for  a given mode. 

in terms of dimensional variables, in order to emphasize the complexity of 

this influence. 

of the same parameters on the natural frequencies of the system. 

convenience, some natural frequencies which were determined in the 

For this purpose, it is necessary to understand the effects 

For 

earlier work 4 for several symmetric and one nonsymmetric mode are given 

as functions of liquid depth in Figure 4. 

It is recognized that, in general, a more unstable system will 

possess a stability boundary whose acceleration ordinate is at a lower value 

for a given value of the frequency parameter 201-10. 

to assess the effects of axial load, ullage pressure, liquid depth, and top 

impedance, a stability boundary acceleration g,1 was determined at an 

excitation frequency value of wxl = 0.996 (201-10) for a range of each of 

these parameters. 

Figures 5 through 8. 

for proper interpretation. 

only a small effect on natural frequencies and, likewise, only an insignificant 

effect on stability as shown in Figure 5. On the other hand, increasing ullage 

pressure significantly raises the natural frequencies of the nonsymmetric 

modes but leaves those of the lower symmetric modes essentially unchanged. 

Therefore, in order 

Theoretical and experimental results are compared in 

These results must be compared with those in Figure 4 

At a given liquid depth, increasing axial tension has 

Thus, as oxl approaches a natural frequency for a symmetric mode, the 

parametric excitation of the initial state is amplified, and the system 

becomes more unstable. This is reflected by the dips in the curves in 
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Figure 6. It is also interesting to note that, at certain frequencies, the 

system becomes completely stable where the parametric coefficient in 

Equation (27) becomes zero. 

Increasing liquid depth changes all natural frequencies, as shown 

in Figure 4, and has a profound influence on stability throughout the depth 

range, as shown in Figure 7. This results from the coincidence of oxl 

with natural frequencies of symmetric modes at certain points, as well as 

the provision of an increased distributed parametric loading on the tank 

wall. 
. I  

The influence of top impedance on stability is shown in Figure 8. 

Increasing this impedance lowers the frequencies of symmetric modes 

while leaving the nonsymmetric mode frequencies unaltered. Thus, strong 

interaction can again be seen to occur. The dip in the curve occurs at an 

impedance such that oxl coincides with the natural frequency of the first 

symmetric mode. 

It is obvious that variation of the above parameters can cause either 

an increase o r  decrease of stability, depending on the range of analysis. 

Further, it must be recognized that many nonsymmetric modes are present 

in the frequency range indicated in Figure 4, and each mode can become 

unstable as the one which was studied. Therefore, a complex pattern of 

instability and parametric resonance occurs with many overlapping regions 

of instability. The overall trend of the data shows good qualitative agreement 

between theory and experiment , although signif ic ant quantitative di s cr  epanc ie s 

exist because of the reasons previously discussed. 
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DIGITAL COMPUTER PROGRAM 
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INPUT DATA DESCRIPTION 

Card Fortran Variable7 
Definition NO. Symbol Name Units 

1 RHO 386p lb/in. weight density of liquid 

RHOS 386PS lb/in. weight density of the shell 

A0 "0 in. inner radius of the tank 

SH h in. depth of liquid 

SHS hS in. thickness of shell 

2 

SL I in. length of the shell 

lb/in. 2 ullage pressure P O  

ENU 1, Poissons ratio 

E E lb/in. modulus of elasticity 

BMSTR z::=: nondimensional top impedance 

PO 

co 
NJ  

N 

w 
BM 

CPO 

NOPT 

M 

5 UMJ(1) 

6 W 

c O  in. / sec  speed of sound in the liquid 

N 
m j  

no. of roots p 

no. terms in ser ies  expressions 

w/2n CPS excitation frequency 

lb sec2/in. top impedance 

lb applied force 
z O  

print option 

m circumferential wave number 

rootsof J& (p .) =0 ,  m # 0 
pmj mJ 
W / 2 V  CPS excitation frequency 

lb  sec2/ in. top impedance BM zO 

7Note that some variables in computer program a r e  slightly different from 
those as defined in NOMENCLATURE on pp. v to vi of text portion of this 
report. 
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Card Fortran Variable 
No Symbol Name Units Definition 

7 

CPO P O  lb applied force 

NOPT print option 

M m circumferential wave number 

roots of Jh (pmj ) = 0, m = 0 UMJ(1) Pmj m = O  

PROGRAM OUTPUT 

Printed Output 

1. Input data h, hs, 1 ,  "0, a, PO, Z**, 386p, 386ps, E, c0, v 

2. In subroutine MITERS the mode no., eigenvalue, no. of iterations, 
no. of times Aitken's delta process is used, the eigenvector, and 
check eigenvalue and eigenvector 

3. Mode no., x, Wk in rad/sec, and Wk in cps 

- -  --- 
4. win cps, a k i n  cps, K, T, M, a, q, ]x0I, gx, andw/2wk 

PROGRAM NOTES 

Subprograms Used 

In addition to the main program the following subroutines are used: 

1. BES, computes the Bessel functions Jn or &. 

2. MATINV, computes the inverse of a real  matrix. 

3. MPRINT, prints matrix in  matrix format. 

4. MITERS, computes the eigenvalues and eigenvectors of a real  or 
complex matrix by the power method. 

5. NOPT is a print option that allows printing of intermediate results. 
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The following subroutines are included as a par t  of subprogram MITERS: 

SWEEPX 

NPNRMX 

DPMLTX 

SYMBOLIC LISTING 

Some of the program FORTRAN symbols which were  not defined in  
the Input Data Description are: 

For t r an  
Symbol 

A 

BMS 

HS 

cs 

H 

SLSTR 

AONSQ 

x10  

x20 

ALN(1) 

ALNP( I)  

=(I) 

x 2 m  

XOB(1) 

X1 B(1) 

ENB(1) 

Variable t 
Name 

a 

Ms = 2apsahsl 

H S  

CS 

H 

1 /a 

a i  I 

x10 

x20 

Xn n =  l , N  

n' = l , N  Xn' 

n '  = l , N  'In' 

n '  = l , N  X21-l' 

XOI l '  n '  = l , N  

n'  = l , N  'In1 

En' n' = l , N  

s 

u 

tcorresponding to Final  Report Part I. 
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F o r t r a n  
Symbol 

ETA(J)  

CJH(1) 

CNJ(1, J )  

BMJN(1, J )  

BN1 (I) 

BN2( I) 

BNO(1) 

BOON( I) 

BMMNN( I , J ) 

RlM(1, J )  

S2M(I, J )  

UlM(1, J) 

U2M(I, J )  

T3M(I, J )  

U3M(I, J )  

V2M(I, J )  

WlM(1, J)  

WZM(1, J) 

W3M(I, J )  

R2M(I, J )  

R3M(I, J j  

SlM(1, J )  

j = 1 , N J  

j = 1,NJ 

n' = 1,N; j = 1 , N J  

j = l ,NJ. ;n  = 1 , N  

n =  l , N  

n = 1,rN 

n =  1 , N  

n =  1 , N  

n' = 1,N;  n =  1 , N  



F o r t r a n  
Symbol 

S3M(I, J )  

TlM(1, J )  

TZM(1, J)  

VlM(1, J )  

XlM(1, 1)  

U4M( 1 I) 

V5M( 1 I) 

R4M( 1 I) 

R5M( 1 , I) 

R6M( 1, I) 

OlM(1, 1) 

PlM(I ,  1) 

YlM(1, 1)  

ZlM(1, 1) 

Y2M(I, 1)  

ZZM(I, 1) 

Y3M(I, 1 )  

Z3M(I, 1) 

P2M(Iy 1) 

QZM(1, 1) 

V4M( 1, I) 

S5M( 1 , I) 

Variable 
Name 
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Fortran 
Symbol 

V3M(I, J )  

V5M( 1, I )  

S5M( 1, I )  

UVW(1, J )  

RST(I,  J )  

UTR(1, J )  

UWR(1, J )  

A m  

QBH(1) 

FHU)  

AP H( I )  

BOPH 

B l P H  

BZPH 

CN1 (I) 

CNZ(1) 

CN3(I) 

DNNN( I, J , K) 

ENNN(1, J, K) 

EONN(1, J) 

TPNN(1, J )  

BMBAR 

V a r i a b l e  
N a m e  

V5n 

en"n'n 

On' n e 

- 
M 
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F o r t r a n  
Symbol 

BKBAR 

BTBAR 

ABAR 

QBAR 

XOAQ 

XOSTR 

WSTR 

WKBSQ 

WKSQ 

AMNK(1, J )  

Variable  
Name 

- 
K 
- 
T 

- a 
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pel  I I 1 I I I I I I I I I I I 1 I I I I  I I I I  I 
, 1 1 1 1 1 1 1 1 1  

- 

W 
t a a - 

a w 
H 

a 
W 
0 a a 

z 
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4 3  

SLOOOlOO 
s L 0 0 0 2 0 0  

s L 0 0 0 4 0 0  
SL 0 0 050 0 
Sl.000600 
S L 0 0 0 7 0 0  
SLOO 0 8 0 0  
S L 0 0 0 9 0 0  
s L o o i o o o  
s L 0 0 1 1 0 0  
S L 0 0 1 2 0 0  
SL 0 0130 0 
SLO 0 1 4 0  0 
s L 0 0 1 5 0 0  
SLO 0 1 6 0  0 
S L O O l 7 0 0  
SLOO1800 
S L 0 0 1 9 0 0  
s L 0 0 2 0 0 0  
SLOO210b  
SLO 0 2 2 0 0  
SL 0 0 230 0 
SLO 0 2 4 0  0 
$L002!$00 
SLO 0 2 6 0  0 
SLO 0270 0 
SLb02800 
S L 0 0 2 9 0 0  
SL  0 030 0 0 
$LO031110 
3~003200 
S L 0 0 3 3 0 0  
SLO 0340 0 
SL 0 0 3 5 0  0 
S L 0 0 3 8 0 0  
S L 0 0 3 9 0 0  
~ ~ 0 0 4 0 0 0  
9L004100  
SL o o 42 eo 
~ ~ 0 0 4 3 0 0  
S L 0 0 4 4 0 0  
s L o o 4 s o o  
S L 0 0 4 6 0 0  
S t 0 0 4 7 0 0  
S L 0 0 4 8 0 0  
SLO 0 4 9 0 0  
SLO 050 0 0 
s L 0 0 9 1 0 0  
sLoo52ao 
SL003300 
S L 0 0 5 4 0 0  
SL1)03300  
SL 0 0560  D 
SL003700 
S L ~ O S 8 ~ 0  
S L 0 0 3 9 0 0  
S1.0060 0 0  
8L0061 00 
SL00620 0 
bL0 06300 

s ~ a o  030 o 
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SL006400 

SI-0 066 n @ 
sLon65o o 

S L 0 0 6 7 0 0  
sL006800 
SL006900 
SL007000 
SLOO 710 0 

SLO 0 730 0 

SL007500 
SL00760W 
SLO07700 
S l . 0 0 7 9 0 0  
SLO08000 
SLOO8100 

SL008300 

s~o1-1720 w 
s ~ o n 7 4 0 0  

SLO 082 0 0 

S L O O B S ~  o 
SL o 01350 o 

~ ~ 0 0 ~ 1 3 0 0  

SLO 0910 0 

SL008600 
S L 0 0 8 7 0 0  

SL008900 
SL 0 0 9 0 0 0  

SL009200 
SL009300 
SL009400 
SL009700 
S L 0 0 9 8 0 0  
SLOO9900 
SLOi O O C I O  
SLO10100 
S L O l O P O O  
SL010300 
S L 0 1 0 4 0 0  
SLOlO56 0 
SL CI 1060 0 
SLd10700 

SLOlO9OO 
S L O l l  0 0  0 
sL011100 
sL0ll200 
SL011300 
SL 0114 0 0 
SL011500 
SL011600 
SLO 117 0 0 
SLOl18dO 
SL011900 
sL012000 
SL012100 
SL 012200 
~ ~ 0 1 2 3 0 0  
sl.012400 
SL012500 
SL012600 
SLO 127 0 0 
SL012800 

s ~ o i  0 80 0 
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SI, 0 %c 15 J 0 
SI- f! -4 I 6  n 0 
SI 031700 
SI- b 3 18 0 0 
S L o 3 l Q n o  
sl.0320 0 0 
S L 0 3 2 1  n o  
S L 0 3 2 2 0 0  
SL 0 3 2 3 0 0 
S t- 0 3 2 4 0 0 
SL 0 ~< 2 5 0 0 
SL 0 3 2 6 0  0 
s ~ o ~ 2 7 n o  
s L 0 3 2 e 0 0 
SL. 0 329 0 0 
SLO s3000 
s ~ o a ~ i n o  
S L 0 3 3 2 0 0  
SL 0 3 3 3  0 0 
~ ~ 0 . 3 3 4 0 0  
SLO3350 0 
S I  0 5 3 6 0 0 
S L 0 3 3 7 0 0  
SL 0 3 3 8 0 0  
S L I Y ~ S ~ ~  o 
S L 0 3 4  0 0 0 
S L 0 3 4 1 0 0  
s ~ 0 3 4 2 0 0  
s L 0 3 4 3 0 
S L 0 3 4 4 0 0  
S L 0 3 4 5 0  0 
S L 0 3 4 6 0 0  
S L 0 3 4 7 0 0  
SL0 .34800  
SL 0 3 4 9 0 0  
S L 0 3 5 0 0 0  
SL035100 
S L 0 3 5 2 0 0  
SL03530 0 
S L 0 3 5 4 0 0  

S L 0 3 5 6 0  0 
S L 0 3 5 7 0 0  

SL035900 
S L 0 3 6 0 0 0  

S L 0 3 6 2 0 0  
SL 0 3 6 3 0 0  
S L D 3 6 4 0 0  
S L 0 3 6 5 0 0  

SCCI355dO 

~ ~ 0 3 5 8 0 0  

~ ~ 0 3 6 1 0 0  

~ ~ 0 3 6 6 0 0  
~ ~ 0 3 6 7 0  n 

SL n369n o 
S L 0 3 6 8 0 0  

S L 0 3 7 0 0 0  
S L 0 3 7 1 0 0  
S L 0 3 7 2 0 0  

S L 0 3 7 4 0 0  
Sl .037500 
S L 0 3 7 6 0 0  

8 ~ 0 3 7 3 6 0  
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5 3  

1 
2 

4 
3 

10 

5 

6 
7 
B 
9 

11 

RES 
HES 
R E S  
HES 
RtS 
YES 
B€S 
RES 
BES 
BES 
BES 
RES 
RES 
B € S  
RkS 
BES 
i?ES 
QES 
R E S  
HES 
R€S 

2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
1 2  
1 3  
1 4  
15 
1 6  
17 
18 
1 9  
2 0  
21 
2 2  
23 
2 4  
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12 

23 

2 4  

25 

26 

4 0  

50 

5 1  

32 

53 

70 

80 

c 
c 
C 
C 
C 
e 
C 
c 
c 
Ii 
c 

A I ARRAY NAME OF MATRIX 
I R O W  z D I M E N S I O N E D  AT N + 1  OR G R E A T E R  
ICOL = l l I M E h S I o N f D  A T  N OR G R E A T E R  

hDIM m VALUE OF I IN DlMENSlOM A ( I , J )  I A N D  J W A Y  DIFFER 
SMLST t SMALLEST L E A D I N G  ELEMENT ALLOUED BEFCRE CALLING THE 

N :: NUMBER nF EQUATIONS 

SYSTEM SINGULAR , USUALLY z 1.Q E104 OR 1.0 E-05 

NPI 8 N + 1 
no 100 I = 1, Y 
rcoL ( I I 

100 IRON ( I ) * I 
no 240  ITER = 1, N 
HAXR e I T E R  
MAXC 8 1 
TEMP ARSF ( A 4 M A X R  1 1 
L I M I T ' C  a N P I  - ITER 
no 120 I I: I T E R ,  N 
DO 120 J = 1, LIMITC 

RES 
RFS 
HtS 
RES 
HES 
RES 
HES 
RES 
RES 
0 f S  
RES 
RES 
9kS 
RES 
RFS 
BES 
R E S  
RES 
RES 
YFS 
8ES 
RES 
R E S  
RES 
RES 
BES 
9FS 
RES 
( J E S  
BE9 
BFS 
BES 
bES 
BES 
9ES 
BES 
RES 
BES 
MA 
M A  
M A  
M A  
M A  
MA 
M A  
MA 
M A  

25 
26  
7 7  
28 
? 9  
30 
31 
32 
3.3 
34 
35 
36 
37 
38 
39 
40 
4 1  
42 
43 
44 
45 
46 
47 
48 
49 
50 
5 1  
52 
53 
5 4  
5 5  
5 6  
5 7  
56 
59 
6 0  
61 
62 

100 
2 0 0  
300 
400 
500 
600  
7 0 0  
80 0 
9n0 

MA l o o o  

M A  1200 
M A  1301) 
MA 1 4 0 0  
M A  1 5 0 0  
MA 1600 
M A  1760 
MA 1 8 0 0  
M A  1900 
MA 2000 
M A  2100 
MA 2200 
M A  2300 
M A  2400 

M A  1100 
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M A  2500 
H A  ? t i n o  
M A  2 7 0 0  
MA 2800 
HA 2QQo 
M A  3 0 0 0  
M A  3 1 0 0  
M A  3200 
M A  3 3 0 0  
M A  3 4 a o  
Y A  35no 

Y A  37110 

M A  3900 

M A  3600 

M A  3800 

M A  4000 
M A  4 1 0 0  
M A  4 2 0 0  
M A  4300 
M A  4400 

M A  4600 
M A  4700 
M A  4800 
M A  4900 
M A  5000 

M A  5 2 0 0  
M A  5300 
M A  5400 
Y A  5 5 0 0  
M A  5600 
M A  5700 
M A  5 8 8 0  
M A  5900 
M A  b o a 0  

M A  4500 

M A  5 i n o  

M A  6 1 0 0  
M A  6200 
M A  6300  
M A  6400 
M A  6500 
M A  6600 
M A  6700 
M A  6800 
M A  6 9 0 0  
M A  7 0 0 0  
M A  7100 
M A  7 2 0 0  
M A  7300 
M A  7400 
M A  7 5 0 0  
M A  7600 
M A  7 7 0 0  
M A  7800 
M A  7 9 0 0  
MA 8 0 0 0  
M A  8100 

M A  84110 
M A  8 5 0 0  
M A  8600 

M A  u n o  
M A  8300 
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150 

160 
C 

C 
170 

C 

C 
C 
C 
C 
C 
c 
c 
c 
C 
c 
c 

1 
3 

7 
A 

9 

I 0  
6 

11 

13 

13 
1 4  
16 
1 7  

1 8  

1 9  

20 
3n RETURN 
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I E I G V A L ,  N I T E R ,  NTTRSPI  6PsPb 
2 US, HIMAXR, NC, A I T K E K ,  N A K S f f t b T R S V )  

e C A L L I N G  S E Q U E N C E . . . . .  
c A s MATRTX,  GIMENSIONED ( M A X R  X 2*N) .n R E A L  
c ( M A X R  X 2*N)  - C O H P L F X  
C N = ORDER OF M A T R I X  
C GUESSS!IST, GUESS VECTOR,  DIMENSIONED ( M A X R  X 1) - R E A L  
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C 
c 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
e 
c 
C 

C 
C 
c 
c 
C 

e 

C 

c 

c 
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M T R S 0 5 3 1  
M T R S O 5 3 2  
M T R S b 5 3 3  
M T R S O 5 3 4  
M 1 R S 0 5 3 6 
M T R S o 5 3 7  
Y T R S 0 5 3 8  
M T R S O 5 3 9  
M T R S 0 5 4 0  
M T R S 0 5 4 1  
M TRS 054 2 
M T A S 0 5 4 3  
M T R S 0 5 4 4  
M T R S 0 5 4 7  
M T R S 0 5 4 8  
M T R S 0 5 4 9  
M T R S n 5 5 0  
M T R S O 5 5 1  
M T R S 0 5 5 2  
M T R S 0 5 5 3  
M T R S 0 5 5 5  
M l R S 0 5 5 6  
M T R S 0 5 5 7  
M T R S 0 5 5 8  
M T R S 0 5 5 9  
MTRSOS60 
M T R S 0 5 6 2  
M T R S O 5 6 4  
M T R S b 5 6 5  
M T R S 0 5 6 6  
M T R S 0 6 1 5  
M T R S 0 6 1 6  
M T R S 0 6 1 7  
M T R S 0 6 i B  
M T R S f l 6 1 9  
M T R S o 6 2 0  
Ml'RRS0621 
M T R S O 6 3 6  
M T H S 0 6 3 7  
M T R S O 6 3 8  
M T R S 0 6 4 1  
M T R S 0 6 4 6  
M T R S 0 6 4 7  
M T R S 0 6 4 8  
M T R S 0 6 4 9  
M T R S 0 6 5 0  

M T R S 0 6 6 6  
M T R S 0 6 6 7  
H T R S 0 6 6 8  
Y T R S 0 6 6 9  
H T R S o 6 7 0  
M T R S 0 6 7 1  
M T R S 0 6 7 2  
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